jueves, 4 de junio de 2015

Espectro Electromagnético

¿Qué es el espectro electromagnético?

El espectro referido a un objeto se denomina espectro electromagnéticoo simplemente espectro a la radiación electromagnética que emite (espectro de emisión) o absorbe (espectro de absorción) una sustancia. Dicha radiación sirve para identificar la sustancia de manera análoga a una huella dactilar. El espectro electromagnético se extiende desde la radiación de menor longitud de onda, como los rayos gamma y los rayos X, pasando por la luz ultravioleta, la luz visible y los rayos infrarrojos, hasta las ondas electromagnéticas de mayor longitud de onda, como son las ondas de radio.


Las ondas electromagnéticas de alta frecuencia tienen una longitud de onda corta y energía alta; las ondas de frecuencia baja tienen una longitud de onda larga y energía baja. Siempre que las ondas de luz (y otras ondas electromagnéticas) se encuentran en un medio (materia), su longitud de onda se reduce. Las longitudes de onda de la radiación electromagnética, sin importar el medio por el que viajen, son, por lo general, citadas en términos de longitud de onda en el vacío, aunque no siempre se declara explícitamente. El comportamiento de la radiación 
electromagnética depende de su longitud de onda. 
De acuerdo a esto hay distintos tipos de radiación:





Radiofrecuencia: Las ondas de radio suelen ser utilizadas mediante antenas del tamaño apropiado.Se usan para la transmisión de datos, a través de la modulación. La televisión, los teléfonos móviles, las resonancias magnéticas, o las redes inalámbricas y de radio-aficionados, son algunos usos populares de las ondas de radio.Las ondas de radio pueden transportar información variando la combinación de amplitud, frecuencia y fase de la onda dentro de una banda de frecuencia. El uso del espectro de radio está regulado por muchos gobiernos mediante la asignación de frecuencias. (AM y FM)

Microondas: La frecuencia super alta (SHF) y la frecuencia extremadamente alta (EHF) de las microondas son las siguientes en la escala de frecuencia. Las microondas son absorbidas por la moléculas que tienen un momento bipolar en líquidos. En un horno microondas, este efecto se usa para calentar la comida. La radiación de microondas de baja intensidad se utiliza en Wi-Fi.
 Rayos T: La radiación de terahertzios (o Rayos T) es una región del espectro situada entre el infrarrojo lejano y las microondas. Hasta hace poco, este rango estaba muy poco estudiado, ya que apenas había fuentes para la energía microondas en el extremo alto de la banda (ondas submilimétrica o también llamadas ondas terahertzios). 



Ondas Electromagneticass

ONDAS ELECTROMAGNÉTICAS

Son aquellas ondas que no necesitan un medio material para propagarse. Incluyen, entre otras, la luz visible y las ondas de radio, televisión y telefonía.
Todas se propagan en el vacío a una velocidad constante, muy alta (300 0000 km/s) pero no infinita. Gracias a ello podemos observar la luz emitida por una estrella lejana hace tanto tiempo que quizás esa estrella haya desaparecido ya. O enterarnos de un suceso que ocurre a miles de kilómetros prácticamente en el instante de producirse.

Las ondas electromagnéticas se propagan mediante una oscilación de campos eléctricos y magnéticos. Los campos electromagnéticos al "excitar" los electrones de nuestra retina, nos comunican con el exterior y permiten que nuestro cerebro "construya" el escenario del mundo en que estamos. 
Las O.E.M. son también soporte de las telecomunicaciones y el funcionamiento complejo del mundo actual.

ORIGEN Y FORMACIÓN


Las cargas eléctricas al ser aceleradas originan ondas electromagnéticas
dipolo oscilanteEl campo E originado por la carga acelerada depende de la distancia a la carga, la aceleración de la carga y del seno del ángulo que forma la dirección de aceleración de la carga y al dirección al punto en que medimos el campo( sen q).
Un campo electrico variable engendra un campo magnético variable y este a su vez uno electrico, de esta forma las o. e.m. se propagan en el vacio sin soporte material

CARACTERÍSTICAS de LA RADIACIÓN E.M.

  • Los campos producidos por las cargas en movimiento puden abandonar las fuentes y viajar a través del espacio ( en el vacio) creándose y recreándose mutuamente. Lo explica la tercera y cuarta ley de Maxwell.
  • Las radiaciones electromagnéticas se propagan en el vacio a la velocidad de la luz "c". Y justo el valor de la velocidad de la luz se deduce de las ecuaciones de Maxwell, se halla a partir de dos constantes del medio en que se propaga para las ondas electricas y magnética .
  • {short description of image}
  • Los campos electricos y magnéticos son perpendiculares entre si ( y perpendiculares a la dirección de propagación) y estan en fase: alcanzan sus valores máximos y mínmos al mismo tiempo y su relación en todo momento está dada por E=c· B
  • El campo eléctrico procedente de un dipolo está contenido en el plano formado por el eje del dipolo y la dirección de propagación. El enunciado anterior también se cumple si sustituimos el eje del dipolo por la dirección de movimiento de una carga acelerada
  • Las ondas electromagnéticas son todas semejantes ( independientemente de como se formen) y sólo se diferencian e n su longitud de onda y frecuencia. La luz es una onda electromagnética
  • Las ondas electromagnéticas transmiten energía incluso en el vacio. Lo que vibra a su paso son los campos eléctricos y magnéticos que crean a propagarse. La vibracion puede ser captada y esa energía absorberse.
  • Las intensidad instantánea que posee una onda electromagnética, es decir, la energía que por unidad de tiempo atraviesa la unidad de superficie, colocada perpendicularmente a la direción de propagación es: I=c· eoE2. La intensidad media que se propaga es justo la mitad de la expresión anterior.
  • La intensidad de la onda electromagnética al espandirse en el espacio disminuuye con el cuadrado de la distancia y como "I "es proporcional a E2 y por tanto a sen2Q . Por lo tanto existen direcciones preferenciales de propagación.






El Transformador

TRANSFORMADOR

Se denomina transformador a un dispositivo eléctrico que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna, manteniendo la potencia. La potencia que ingresa al equipo, en el caso de un transformador ideal (esto es, sin pérdidas), es igual a la que se obtiene a la salida. Las máquinas reales presentan un pequeño porcentaje de pérdidas, dependiendo de su diseño y tamaño, entre otros factores.
El transformador es un dispositivo que convierte la energía eléctrica alterna de un cierto nivel de tensión, en energía alterna de otro nivel de tensión, basándose en el fenómeno de la inducción electromagnética. Está constituido por dos bobinas de material conductor, devanadas sobre un núcleo cerrado de material ferromagnético, pero aisladas entre sí eléctricamente. La única conexión entre las bobinas la constituye el flujo magnético común que se establece en el núcleo. El núcleo, generalmente, es fabricado bien sea de hierro o de láminas apiladas de acero eléctrico, aleación apropiada para optimizar el flujo magnético. Las bobinas o devanados se denominan primario y secundario según correspondan a la entrada o salida del sistema en cuestión, respectivamente. También existen transformadores con más devanados; en este caso, puede existir un devanado "terciario", de menor tensión que el secundario.
Conexion transformadores.-Normativa CORPOELEC_ENELBAR
Los niveles de tensión de servicios a los usuarios están determinados por la conexión que presente el transformador, estos servicios pueden ser:


1. Servicio Monofásico:

Este tipo de transformación es el más común y ofrece como tensión de servicio 120/240 V, este tipo de servicio se utiliza normalmente para cargas residenciales en zonas de densidades bajas y medias.
Tabla 1.- Municipios Iribarren, Palavecino. Baja Tensión Alta densidad

La selección de la capacidad del transformador viene dada por la carga a servir. Cuando se trate de instalaciones iníciales, deberá dejarse un margen de reserva (se exigirá el 20%).
2. Servicio Trifásico: 


Salvo para usuarios con tarifa tipo servicio general 1 y general 2, el problema más común de servicio trifásico en distribución consiste en alimentar cargar monofásicas y trifásicas, para esta finalidad son de uso común dentro de la compañía las conexiones Delta Abierta y Cerrada y la conexión estrella, que es la más recomendada por ENELBAR en sus nuevas instalaciones. Las conexiones Delta Abierta y Cerrada serán utilizadas sólo en casos especiales y con previa autorización por parte de ENELBAR.

AUTO-INDUCTANCIA

AUTOINDUCTANCIA

De acuerdo con la Ley de Ampere, la corriente de un circuito forma un campo magnético alrededor del mismo. Adicionalmente, si la corriente cambia en el tiempo, de acuerdo con la Ley de Faraday, se crea un campo eléctrico inducido en todo el espacio, el cual genera a todo lo largo del mismo circuito, una fuerza electromotriz inducida (autoinducción). Una de las principales aplicaciones es el transformador que se presenta de acuerdo a sus características en el número de espiras, material conductor, tipos de transformadores y el núcleo principal por donde circula el flujo magnético que se induce en el circuito primario. Esto a su vez puede esquematizarse por un aumento o una disminución del potencial de salida. Es decir de acuerdo a las necesidades de aplicación en la industria.



Se verá más adelante, que si en la vecindad no existen materiales magnéticos como el hierro o materiales similares, L depende sólo de la geometría del aparato.

La dirección de la fem inducida puede obtenerse de la ley de Lenz. Supóngase que por la bobina (inductor) circula una corriente estacionaria i producida por una batería. Ahora, si repentinamente se reduce la fem (de la batería) aplicada al circuito, la corriente i empezará a “disminuir de inmediato”.

Se observa que el número de encadenamiento de flujo NφB es la cantidad característica importante para la inducción.
Luego se cumple que:

NφB = LiA la constante de proporcionalidad L se le denomina inductancia del aparato
Luego:

En el lenguaje de la ley de Lenz, esta disminución en la corriente, es un “cambio” al que debe oponerse la inductancia. Para oponerse a la corriente que disminuye, la fem inducida debe tener el mismo sentido que el de la corriente, tal como se indica en la figura (a).
Sin embargo, si se “aumenta” repentinamente la fem (de la batería), la corriente i empezará a “aumentar” de inmediato. En este caso el aumento es el “cambio” al que se debe oponer la auto inductancia.
Para oponerse al aumento de la corriente, el sentido de la fem inducida debe ser opuesto al de la corriente, tal como se muestra en la figura (b). 



INDUCCIÓN ELECTROMAGNÉTICA

Inducción electromagnética




La inducción electromagnética es la producción de corrientes eléctricas por campos magnéticos variables con el tiempo.
La inducción electromagnética es el fenómeno que origina la producción de una fuerza electromotriz (f.e.m. o voltaje) en un medio o cuerpo expuesto a un campo magnético variable, o bien en un medio móvil respecto a un campo magnético estático. Es así que, cuando dicho cuerpo es un conductor, se produce una corriente inducida.



Una vez que Hans Christian Oersted puso de manifiesto que una corriente podía producir un campo magnético, muchos físicos empezaron a plantearse si ocurriría lo contrario: que un campo magnético fuese capaz de crear una corriente. Vamos a describir los experimentos que llevaron a cabo Michael Faraday en Inglaterra y Joseph Henry en E.U. y que ponen de manifiesto el fenómeno de la inducción.

Experimento de Faraday

En uno de sus experimentos, en 1831, Faraday enrolló un cable conectado a una pila alrededor de un anillo de hierro y enrolló un segundo cable en el otro lado del anillo, un cable sin pila. La idea era simple: si una corriente eléctrica generaba un campo magnético, tal vez un campo magnético generaría una corriente eléctrica.

De modo que Faraday puso un detector en el segundo cable, el que no tenía pila alguna, y encendió el primer circuito conectado a la pila. Sin embargo, no sucedió lo que podría parecer evidente: cuando la pila estaba encendida y por tanto había un campo magnético, el segundo cable no mostraba corriente alguna. La situación era exactamente igual con la pila encendida que con la pila apagada. Pero, ¡ah!, algo inesperado sí sucedía: justo en el momento de encender el primer circuito o apagarlo, aparecía una corriente eléctrica en el segundo circuito.

Lo extraño era que no era la existencia de un campo magnético lo que inducía una corriente en el circuito sin pila: era la variación del campo magnético la que generaba corriente. Además, y esto era también curioso, cuando se encendía el circuito, la corriente en el segundo circuito iba en un sentido, pero al apagarlo, la corriente iba en sentido contrario. En ambos casos se detectaba corriente durante un tiempo muy corto: el que duraba la transición apagado-encendido y viceversa. Eran los cambios, y no la mera existencia de campo magnético, los que causaban la aparición de corriente.
Faraday enunció un principio que hablaba exclusivamente de cables y circuitos, y el ruso Heinrich Lenz lo refinó añadiendo el sentido de la corriente. Paradójicamente, ese fenómeno curioso pero aparentemente inútil del que ni siquiera el propio Faraday fue capaz de predecir su importancia, hoy en día domina nuestra vida cotidiana. Se encuentra allí donde dirijamos la mirada, pues es la base de nuestra tecnología, nuestro desarrollo y, en consecuencia, nuestra civilización: generadores eléctricos (ya sean de centrales térmicas, atómicas, hidráulicas, eólicas), motores eléctricos, transformadores (que se encuentran en todos los aparatos eléctricos y electrónicos del hogar), osciladores, baterías, hornos de inducción, ........................

Las leyes de Faraday-Henry y la ley de Lenz pueden sintetizarse en una:








Ley de lenz

LEY DE LENZ
La Ley de Lenz plantea que las tensiones inducidas serán de un sentido tal que se opongan a la variación del flujo magnético que las produjo; no obstante esta ley es una consecuencia del principio de conservación de la energía.

Ley de Lenz: "El sentido de las corrientes o fuerza electromotriz inducida es tal que se opone siempre a la causa que la produce, o sea, a la variación del flujo".

Gracias a la ya nombrada Ley de Lenz, se completo la Ley de Faraday por lo que es habitual llamarla también Ley de Faraday-Lenz para hacer honor a sus esfuerzos en el problema, los físicos rusos siempre usan el nombre "Ley de Faraday-Lenz".









LEY DE FARADAY

LEY DE FARADAY

 La Ley de inducción electromagnética de Faraday (o simplemente Ley de Faraday) se basa en los experimentos que Michael Faraday realizó en 1831 y establece que el voltaje inducido en un circuito cerrado es directamente proporcional a la rapidez con que cambia en el tiempo el flujo magnético que atraviesa una superficie cualquiera con el circuito como borde.


 Ejemplo:







FUERZA ELECTROMOTRIZ INDUCIDA

FUERZA ELECTROMOTRIZ 

La fuerza electromotriz (FEM) es toda causa capaz de mantener una diferencia de potencial entre dos puntos de un circuito abierto o de producir una corriente eléctrica en un circuito cerrado. Es una característica de cada generador eléctrico. Con carácter general puede explicarse por la existencia de un campo electromotor \xi \, cuya circulación, \int_S\xi  ds \,, define la fuerza electromotriz del generador.
Se define como el trabajo que el generador realiza para pasar por su interior la unidad de carga positiva del polo negativo al positivo, dividido por el valor en Culombios de dicha carga.
Esto se justifica en el hecho de que cuando circula esta unidad de carga por el circuito exterior al generador, desde el polo positivo al negativo, es necesario realizar un trabajo o consumo de energía (mecánica, química, etcétera) para transportarla por el interior desde un punto de menor potencial (el polo negativo al cual llega) a otro de mayor potencial (el polo positivo por el cual sale).



EJERCICIOS PROPUESTOS:

Un generador conectado a un circuito ha producido una energía de 5000 J. Calcula la fuerza electromotriz si la carga que ha circulado es de 250C.

La energía eléctrica es equivalente a la carga que se traslada por la fuerza electromotriz que se induce en el circuito: E = q\cdot \epsilon 
Ahora despejamos y sustituimos en la primera de las ecuaciones: 
\epsilon = \frac{E}{q} = \frac{5\ 000\ J}{250\ C} = \bf 20\ V
















Flujo Magnetico

FLUJO MAGNÉTICO


El flujo magnético Φ (representado por la letra griega fi Φ), es una medida de la cantidad de magnetismo, y se calcula a partir del campo magnético, la superficie sobre la cual actúa y el ángulo de incidencia formado entre las líneas de campo magnético y los diferentes elementos de dicha superficie. 
La unidad de flujo magnético en el Sistema Internacional de Unidades es el weber y se designa por Wb (motivo por el cual se conocen como perímetros los aparatos empleados para medir el flujo magnético).
En el sistema cegesimal se utiliza el maxwell (1 weber =108 maxwells).


El flujo magnético representa el numero de lineas de fuerza que atraviesan una superficie.




  Flujo magnético:     Fm = B·S·cos q


Las tres formas que hay de variar con el tiempo el flujo de un campo magnético a través de una superficie: 
  • Cuando el campo cambia con el tiempo B(t).
  • Cuando el área de la espira cambia con el tiempo A(t).
  • Cuando el ángulo entre el vector campo B y el vector superficie A cambia con el tiempo q(t)











EJERCICIOS PROPUESTOS:


Calcula cuál será el flujo magnético que sale por el polo norte de un imán si su superficie es de 40 cm2 y la inducción magnética en dicha superficie es de 2,5 T.

La fórmula que debemos aplicar es:
Como no nos dicen nada del ángulo que forman B y S, suponemos que son perpendiculares, es decir, forman un ángulo de 90º. Como el coseno de 90º es 1, la expresión anterior queda:
Φ=B.S= 2,5 . 0,0040 = 0,01 Wb

























Joseph Henry

JOSEPH HENRY

Joseph Henry (Albany, 17 de diciembre de 1797 - Washington D. C., 13 de mayo de 1878) fue un físico estadounidense conocido por su trabajo acerca del electromagnetismo, en electroimanes y relés. Descubrió la inducción electromagnética aunque luego averiguó que Faraday se le había adelantado.
Las vidas de M. Faraday y Joseph Henry tienen muchos elementos en común. Los dos provenían de familias muy humildes y se vieron obligados a trabajar desde muy jóvenes por lo que no pudieron seguir sus estudios. Henry fue aprendiz de relojero a los trece años (Faraday lo sería de encuadernador también a esa misma edad).
Como Faraday, Henry se interesó por el experimento de Ørsted y, en 1830, descubrió el principio de la inducción electromagnética, pero tardó tanto tiempo en publicar su trabajo que el descubrimiento se le concedió a Faraday.
En 1831, Henry inventó el telégrafo y, en 1835, perfeccionó su invento para que se pudiese usar a muy largas distancias. Con todo, no lo patentó. Fue Samuel Morse quien, ayudado personalmente por Henry, puso en práctica el primer telégrafo en 1839 entre Baltimore y Washington, después de conseguir ayuda financiera del Congreso de los Estados Unidos.
Henry destacó también como un excelente administrador. Ejerció cargos de máxima responsabilidad en varias instituciones científicas estadounidenses. Fomentó el desarrollo de nuevas ciencias y alentó el intercambio y la comunicación de ideas científicas a escala mundial.




EL EXPERIMENTO DE HENRY

Henry descubrió, de forma independiente y simultánea a Faraday, que un campo magnético variable induce una fuerza electromotriz. En particular, Henry observó que, si un conductor se mueve perpendicularmente a un campo magnético, aparece una diferencia de potencial entre los extremos del conductor.
El interés del experimento de Henry reside en que la aparición de la fuerza electromotriz inducida puede ser explicada de forma clara por la ley de Lorentz, es decir, por las fuerzas que el campo magnético ejerce sobre las cargas del conductor.















Michael Faraday


Michael-faraday3.jpg

MICHAEL FARADAY

Michael FaradayFRS (Newington22 de septiembre de 1791-Londres25 de agosto de 1867), fue un físico y químico británico que estudió el electromagnetismo y la electroquímica. Sus principales descubrimientos incluyen la inducción electromagnéticadiamagnetismo y la electrólisis.









Faraday es mejor conocido por su trabajo relacionado con electricidad y magnetismo. Su primer experimento registrado fue la construcción de una pila voltaica con siete monedas de medio penique, apiladas junto a siete discos chapados en cinc y seis trozos de papel humedecidos con agua salada. Con esta pila pudo descomponer el sulfato de magnesio (primera carta a Abbott, 12 de julio de 1812).